
Optimal effective current operator for flux qubits accounting for inductive effects

Zheng Li (李政�,1,2,* Tao Wu (吴焘�,1,3 and Jianshe Liu (刘建设�1,3

1Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

3Institute of Microelectronics, Tsinghua University, Beijing 100084, China
�Received 20 September 2007; published 21 April 2009�

An optimal effective current operator for flux qubit has been investigated by taking account of the inductive
effects of the circuit loop. The whole system is treated as two interacting subsystems: one is the inductance-free
flux qubit consisting of three Josephson junctions and the other a high frequency LC oscillator. As the com-
posite system hardly affords one excessively high-energy LC photon, an effective theory for the inductive flux
qubit providing its physical variable operators has been achieved, which can take account of the inductive
effects but does not include the additional degree of freedom for the LC oscillator. Considering the tradeoff
between simplicity and accuracy, it has been revealed that the optimal effective current operator resulting in an
error only on the order of L3/2 provides an approximation of high accuracy, which is also verified numerically.
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I. INTRODUCTION

Superconducting circuits are promising candidates for
quantum information processing1–3 and, in order to reduce
the impact of both charge and flux noise, flux qubit consist-
ing of a superconducting loop interrupted by three Josephson
junctions �3jj� has been proposed, designed, and realized.4–11

The loop in the original design is small enough and its in-
ductive effects, therefore, could be neglected at the first
approximation.4 The constraint of the flux quantization on
the three phases across the 3jj yields two independent phase
variables for the system. On the other hand, inductive effects
are essential in several inductive coupling schemes.12–17

These systems can be systematically studied by applying a
general network graph theory,18,19 which indicates that an
independent phase is associated to the loop self-inductance
in the original circuit and the 3jj flux qubit, thus, turns out as
a three-phase system. In order to include the inductive effects
judiciously, appropriate terms could be reallocated to im-
prove the original operators in the two-phase system. First,
the inductive effects, considered as corrections to the energy
levels of the two-phase system, have been addressed but with
some flaws by Crankshaw and Orlando20 in a semiclassical
approach, and, consequently, an effective Hamiltonian has
been reached14 as well as a current operator in the two-flux-
state basis for the flux qubit.21 Another reason why we build
up an effective theory to include the inductive effects is that
an inductance of a non-negligible size may lead the device to
a less useful qubit.22

Current operator is crucial to the accurate control, cou-
pling, and measurement of flux qubits.23 In particular, it
could play a key role in understanding the dynamics of the
flux qubit by a general multilevel model.9,24,25 Although vari-
ous forms of current operators have been utilized in all kinds
of regimes, the validity of the specific current operators has
not been justified seriously and error analyses are hardly
available. In this work, a systematic investigation on the op-
timal two-phase effective current operator for the three-phase
system is carried out and an error analysis is provided.

The paper is organized as follows. In Sec. II, we review
some basic ideas on the loop current in a classical circuit

model. In Sec. III, we construct the three-phase Hamiltonian
and decompose it into a form showing that two subsystems
weakly interact with each other; then we develop an effective
theory, the photon transition path �PTP� approach based on
the Brillouin-Wigner �BW� expansion,26 to describe the
three-phase system in Sec. IV. In Sec. V, we obtain the opti-
mal effective two-phase loop current operator from the
unique one for the whole system and a brief numerical dis-
cussion is presented in Sec. VI.

II. CLASSICAL ANALYSIS

The schematic circuit for the 3jj flux qubit with a loop
inductance is demonstrated in Fig. 1�a�, where the third junc-
tion is a little smaller than those two others; representing the
relative sizes, the parameter �k,

�k =
ICk

IC0
=

Ck

C0
, k = 1,2,3, �1�

indicates the area factor of the kth junction, where IC0
= �IC1+ IC2� /2 and C0= �C1+C2� /2 are design parameters.
Parameters �1 and �2 are supposed to be close to 1; the
deviations of which are determined by the accuracy of fab-

(a) (b)

FIG. 1. �a� Circuit of an inductive flux qubit with the phase
difference � across the loop inductance L, the reduced applied ex-
ternal flux �X=2��X /�0 with �0 as the flux quantum, and the
phase difference �k across the kth junction characterized via the
critical current ICk and the capacitance Ck for k=1, 2, and 3. �b�
Transformation between the current and voltage sources, the arrow
and the plus and minus symbols indicate the directions of the cur-
rent and voltage sources, respectively.
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rication, while �3�0.8 and the reduced applied external flux
�X is biased on the vicinity of �X=�, all of which are se-
lected to benefit the energy levels of the flux qubit. These
three junction phases �1,2,3 and the phase difference � across
the loop inductance L are not independent of one another and
obey the flux quantization in this superconducting system as

�1 + �2 + �3 = � + �X, �2�

the signs of which are also indicated in Fig. 1�a�.
In the classical regime, the junction performs as a current-

flux two-port circuit element, a nonlinear inductance, and the
flux quantization condition imposes a predetermined con-
straint. In the dc regime, without considering capacitances,
the loop current flows equivalently through four current ele-
ments in the loop including the Josephson junctions and the
loop inductance as

Iq = ICk
sin �̄k = −

�0

2�

�̄

L
, k = 1,2,3, �3�

where �̄1, �̄2, �̄3, and �̄ are the possible static phase values
obtained from Eqs. �2� and �3�. Two opposite current direc-
tions present an additional degeneracy of the circuit. Further-
more, in the ac regime, if only taking account of the small
oscillations in the circuit, each junction works at the static
phase point as a pure inductance,

Lk =
�0

2�ICk
cos �̄k

, �4�

if cos �̄k�0 for k=1, 2, and 3. The series impedance of the
circuit,

Z��� = − i�L + �
k=1

3
− i�Lk

1 − �2LkCk
�5�

with i as the imaginary unit, provides its several characteris-
tic frequencies; especially, when the circuit works at such an
ultrahigh frequency that the junction inductances can be
treated as open circuits, there exists only one significant os-
cillation along the loop between its small inductance L and
series capacitance Cser with a high characteristic frequency

�LC =� 1

LCser
, �6�

where Cser= ��k=1
3 Ck

−1�−1=�serC0.
Generally, the nonlinear effects of the junctions generate

current components of other frequencies different from the
external flux-driven source’s. Only considering the output
profiles of the junctions, we can still apply this kind of spe-
cific current sources to the rest of the circuit which obeys the
linear superposition rules. Picking an arbitrary frequency �
in the frequency domain and utilizing a source transforma-
tion shown in Fig. 1�b�, we have

Iloop��� =

�
k=1

3
ICk���
i�Ck

�
k=1

3
1

i�Ck
+ i�L

, �7�

where ICk��� is obtained from ICk sin �k via the Fourier
transform. Interestingly, when L is small enough to neglect,
Iloop��� in Eq. �7� does not depend on � explicitly and we
utilize the inverse Fourier transform F−1 again as

Iloop�t� = F−1�Iloop�����2L→0� = Cser�
k=1

3
ICk sin �k

Ck
, �8�

where �k=1
3 �k=�X since � vanishes when L→0. This form

of the loop current Iloop�t� directly goes with the fact that the
junctions connect to a topological network consisting of lin-
ear circuit elements. Delightfully, Iloop�t� in Eq. �8� is in ex-
act agreement with the one for the two-phase system derived
in the quantum regime by Maassen van den Brink14 and with
our following effective one. This suggests that quantum su-
perconducting circuit analysis and design might benefit in
elegant ways from classical circuit theories and computer-
aided design �CAD� tools.

III. QUANTUM ANALYSIS FOR SYSTEM HAMILTONIAN

To construct the Hamiltonian comfortably, we first select
three junction phases �1,2,3 as the spatial variables and ex-
press the system Hamiltonian in a sum of energy terms simi-
lar to other superconducting loop circuits such as the rf qubit
and the superconducting quantum interference device
�SQUID� qubit as

Ĥ3p = �
k=1

3 	 Q̂k
2

2Ck
− EJk cos �̂k
 + 	�0

2�

2

�̂2

2L
, �9�

where Q̂k is the charge operator conjugated with the phase

�̂k, i.e., Q̂k=−2ei �
��k

or ��̂k , Q̂k�=2ei with e the electronic

charge; EJk=
�0ICk

2� is the Josephson energy of the kth junction.
The former sum in Eq. �9� represents the total energy of
junctions including their charge and Josephson energy and
the latter term represents the loop inductive energy. Accord-
ing to the design, the reduced inductance size �,

� =
2�LIC0

�0
, �10�

is usually small enough that the loop phase difference �̂

behaves as a small variable with its norm ��̂� tending to be
equal to zero, while the loop current still keeps finite due to
the biased junctions. Consequentially, its conjugate variable

Q̂�, which we refer to as ��̂ , Q̂��=2ei, diverges on its norm

according to the Heisenberg uncertainty principle ��̂� • �Q̂��
�e. In the classical regime, a quadratic potential �

�0

2� �2 �2

2L
means that there is a generalized restoring force
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F� osc =
�0

4�L
��1,�2,�3

�2 =
�0�

2�L
�1,1,1�T �11�

providing a nonparallel generalized acceleration

a�osc = Cdiag
−1 F� osc =

�0�

2�LC0
r� , �12�

where Cdiag is a diagonal matrix with its diagonal elements
C1, C2, and C3 and

r� = � 1

�1
,

1

�2
,

1

�3
T

.

In the quantum regime, the deep quadratic potential explic-
itly in proportion to 1 /� is capable to bind up the quantum
states of this three-dimensional system in the vicinity of a
phase plane �=0, where a fast vacuum fluctuation occurs
along the unique direction r� parallel to the acceleration a�osc.
Therefore, the original spatial variable set ��1 ,�2 ,�3�, al-
though helpful in the construction of the Hamiltonian, pre-

sents difficulties in handling the charge operator Q̂�, which
represents one of the most important quantum properties of
the three-phase system.

To solve the problem, we utilize a linear transformation to
achieve another set of coordinates �� ,�1 ,�2� where besides
� the other two coordinates are labeled via �1 and �2 and

their conjugates are Q̂�1
and Q̂�2

, respectively. The linear
transformation between these two sets of coordinates is in-
troduced via a matrix A defined as ��1 ,�2 ,�+�x�T

=A��1 ,�2 ,�3�T, or equivalently as

Q̂	
T = �Q̂�1

,Q̂�2
,Q̂�� = �Q̂1,Q̂2,Q̂3�A−1. �13�

Thus, the Hamiltonian Ĥ3p changes to

ĤA = 1
2Q̂	

T ACdiag
−1 ATQ̂	 + V��1,�2,�� , �14�

where V��1 ,�2 ,�� is the potential in the present framework.

Since the charge operator Q̂� tends to diverge when �→0, if
the charge coupling coefficients in ACdiag

−1 AT are assumed to
be finite and independent of �, a proper candidate for 	
subsystem on ��1 ,�2� should avoid any direct charge cou-
pling from the � subsystem. It mathematically requires that
the directions of �1 and �2 in the original coordinates should
be perpendicular to the acceleration direction r� of the oscil-
lation mentioned above, which means that the plane spanned
by �1 and �2 is unique as well as

Q̂� = Cser�
k=1

3
Q̂k

Ck
, �15�

revealing the charge in the series capacitor Cser. Some other
explanations in the classical regime are also given in Refs.
14 and 20, both of which have achieved the proper variable
transformations by avoiding the cross charge energy terms
between 	 and � subsystems.27 Although they have pre-
dicted the right ones based on the linearity of the circuit, it is
more comfortable in the quantum regime to emphasize the

reason why the 	 subsystem as well as Q̂� should be se-

lected uniquely, since the diverging charge fluctuations
merely serve as a pure quantum phenomenon.

The remaining degrees of freedom endowed by A involve
the internal variable selections of 	 subsystem. A straight-
forward way is that �1 and �2 only deviate slightly from �1
and �2, respectively; then, the whole transformation reads as
follows:

��1

�2

�
� = �1 −

Cser

C1
−

Cser

C1
−

Cser

C1

−
Cser

C2
1 −

Cser

C2
−

Cser

C2

1 1 1
���1

�2

�3
� + �

Cser

C1

Cser

C2

− 1
��X,

�16�

where the last term of its right side is a set of constant biases
as a translation in the superconducting phase space. For
short, it can also be reformatted as

�k = �k −
Cser

Ck
�, k = 1,2, �17�

which clearly shows that �k reduces to �k when �→0. The
transformed charge operators

�Q̂�1

Q̂�2

Q̂�

� = �
1 0 − 1

0 1 − 1

Cser

C1

Cser

C2

Cser

C3

��Q̂1

Q̂2

Q̂3

� �18�

indicate that Q̂�1
states the charge of the island between the

junctions 1 and 3 and analogously for Q̂�2
. If we also define

�3 = �3 −
Cser�

C3
, �19�

equating to �X−�1−�2, these three phase variables �1,2,3 con-
fined by the flux quantization seem to act as the junction
phases in the two-phase system, which is confirmed by the
following transformed Hamiltonian:

Ĥtr = Ĥ0 + 	â†â +
1

2


�LC + Ĥint, �20�

where

Ĥ0 =
1

2
Q̂�

TC2p
−1Q̂� − �

k=1

3

EJk cos �̂k, �21�

â†â =
1


�LC
� Q̂�

2

2Cser
+ 	�0

2�

2

�̂2

2L
 −

1

2
, �22�

Ĥint = �
k=1

3

EJk cos �̂k − �
k=1

3

EJk cos	�̂k +
Cser

Ck
�̂
 , �23�

Q̂� =�Q̂�1

Q̂�2

 , �24�
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C2p = �C1 + C3 C3

C3 C2 + C3
 . �25�

The Hamiltonian has been decomposed into three parts. The

first part Ĥ0 is the Hamiltonian of the 	 subsystem for the
inductance-free flux qubit.4 The middle part �â†â
+1 /2�
�LC shows that the LC oscillator consists of the

phase variable � and its conjugate Q̂� and its characteristic
frequency �LC=1 /�LCser is high enough as mentioned in the
classical regime. The operators â† and â are defined, respec-
tively, as the photon creation and annihilation operators and

the dimensional factor of �̂= 2�
�0

�4 L
2

Cser

�â†+â�
�2

is in proportion to

�1/4. The last part Ĥint is the interaction Hamiltonian between
these two subsystems, which is weak enough compared with


�LCâ†â and Ĥ0 to make the 	 subsystem only be slightly
perturbed by the LC oscillator. The current implementation

of Ĥint is useful for numerical solutions of diagonalizing
Kronecker product matrices with the fast Fourier transform
�FFT� tools,28 which are also utilized in this paper, and its
series expansion on �̂

Ĥint = �
k�1

V̂k�̂
k, �26�

where V̂k= 1
k!

�k

��k Ĥint ��=0, is fitted for the perturbation methods
which should deal with the couplings of different strengths.

IV. PHOTON TRANSITION PATH METHOD

A. Dressed states in manifolds

To understand the energy diagram of this system shown in
Fig. 2, let us briefly recapitulate the well-known dressed state
concept.29 For the sake of simplicity, we do not explicitly
consider the possible inner degeneracy in the two-phase sub-
system further and have a set of complete orthogonal basis

BĤ0
= ��� f� � Ĥ0�� f�= f�� f��, where the arbitrary normalized

eigenstate �� f� goes with its eigenenergy  f. The LC oscilla-
tor keeps its sth eigenstate ��s� as â†â��s�=s��s�.

When the interaction Ĥint is neglected at the first approxi-
mation, it is convenient to find that a series of dressed
artificial-atom states ��� f� � ��0� , . . . , �� f� � ��N� , . . .�, where
N is a non-negative integer, are the eigenstates of the whole
system with their eigenenergies � f +

1
2
�LC , . . . , f + �N

+ 1
2 �
�LC , . . .�, respectively. Since 
�LC��−1/2 is much

larger than  f independent of �, the dressed states are so well
separated from one another that the tensor-product states
which keep the same photon number can be grouped together
to form one so-called manifold. For example, the Nth mani-
fold MN

0 = ���� � �� f� � ��N� , ∀ �� f��BĤ0
� consists of all pos-

sible eigenstates possessing N LC photons and maintains the
same energy-level structure as the two-phase flux qubit’s if

�N+ 1
2 �
�LC is subtracted. After the weak interaction Ĥint

turns on in the order analysis, the possible intra- and inter-
manifold photon-assisted transitions bring perturbations of
different strengths, which cannot completely destroy the
manifold structures, so the perturbed eigenstates in the Nth
manifold MN can still be distinguished from other mani-
folds’ due to the �N+ 1

2 �
�LC energy shifting. This kind of
understanding can be revealed by one well-known perturba-
tion approach, the unitary transformation �UT� method,29

which introduces a specific unitary transformation T̂

=eiŜ �Ŝ=Ŝ†, resembling a time-evolution operator, to rotate the

Hamiltonian Ĥtr into a different one Ĥtr� = T̂†ĤtrT̂, so that it

can be diagonalized as Ĥtr� =�N=0
� H̃N��N���N� on an arbitrary

order of �. The two-phase Hamiltonian H̃N performs as an
effective one for the Nth manifold MN: with the eigenstate

basis BH̃N
= ���̃N� � H̃N��̃N�= ̃N��̃N��, the Nth manifold MN

can be rewritten as MN= ���� � ���= T̂���̃N� � ��N�� , ∀ ��̃N�
�BH̃N

�. In particular, when Ĥint is neglected we can select

Ŝ=0 and obtain the effective Hamiltonian H̃N
�0�= � 1

2

+N�
�LC+ Ĥ0 indicating that the manifold MN unsurpris-
ingly becomes MN

�0� when the interactions turn off. With the

unitary operator T̂, one can also consequently construct other
effective operators.

On the other hand, since there is hardly an experimental
way to keep the high-energy LC oscillator excited in the
superconducting circuit applications, what needs to be fo-
cused on actually is the lowest eigenstates belonging to the
manifold M0. This physical requirement also enables us to
circumvent the additional discussions on that the inductance-
free flux qubit as an infinite-level system still leaves the
high-energy eigenstates in M0 not well separated from but
overlapping with the lowest ones in M1 for a specific value
� in the energy diagram. By means of the Rayleigh-
Schrödinger �RS� expansion with the arbitrary eigenstate ���
in M0 and its eigenenergy , respectively, expanded as

��� = ���0�� + ���1�� + ���2�� + ¯ , �27�

 = 1
2
�LC + �0� + �1� + �2� + ¯ , �28�

where both ���k�� and �k� are in proportion to �k/4 for k as an
integer and ���0�� belongs to the manifold M0

�0�, an effective
Hamiltonian on the order of � has been obtained but without

1
2
h̄ωLC

3
2
h̄ωLC

5
2
h̄ωLC

LC Oscillator

Qubit

M0

M1

M2

Whole System

+ →

FIG. 2. Energy diagram of flux qubit with a loop inductance.
When the inductance-free flux qubit and the LC oscillator interact
with each other in a perturbation condition, the lowest eigenstates in
the dressed state manifold M0 denoted with the dashed-line box are
well separated from the ones in other manifolds M1 ,M2 , . . . due to
the large shifting caused by the LC-photon energy 
�LC.
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further discussions on the higher-order expansions in Ref.
14. In this paper, based on the BW expansion, another fa-
mous perturbation theory, we develop a photon transition
path method to further explore the perturbation procedure
and compare it with the one in Ref. 14 and also with the UT
method.

B. Formal substitution derivation

Besides the order expansion in Eq. �27�, we also expand
��� in the energy eigenbasis of the oscillator as

��� = �
s=0

�

��s� � ��s� = �
s=0

�

�
k=0

�

��s
�k�� � ��s� , �29�

where ��s�= ��s ��� and ��s
�k����k/4. Since the expansion in

Eq. �28� begins with a constant number 1
2
�LC, we subtract it

from Ĥtr and redefine the Hamiltonian Ĥtr as

Ĥtr = Ĥ0 + 
�LCâ†â + Ĥint. �30�

Consequently, the biased eigenenergy  satisfies �
�LC.

The Hamiltonian Ĥtr can be expanded as a Kronecker prod-
uct matrix as follows:

Ĥtr = �
Ĥ0,0 Ĥ0,1 ¯ Ĥ0,s ¯

Ĥ1,0 Ĥ1,1 + 
�LC ¯ Ĥ1,s ¯

] ] � ] ¯

Ĥs,0 Ĥs,1 ] Ĥs,s + s
�LC ¯

] ] ] ] �

� ,

�31�

where the operator Ĥs,s= Ĥ0+ ��s�Ĥint��s� refers to the self-

transition of the sth level and Ĥs,s1
= ��s�Ĥint��s1

�= Ĥs1,s
† re-

fers to the transition between the sth and s1th levels of the

oscillator. The operator Ĥs,s consists of terms of different

strengths due to the nonlinearities included in Ĥint, and its

dominant term Ĥ0 approximating Ĥs,s on O��0� suffers from
an error on O��1/2� instead of O��1/4� because of the optical
selection rules. For the same reason, the dominant terms of

the operators Ĥs,s1
are also weakened on O���s−s1�/4�. More

details about the order discussion are presented in Appen-

dixes A and B. The eigenequation Ĥtr���=��� is decom-
posed into a series of equations as

�Ĥ0,0 − ���0� = − �
k�0

Ĥ0,k��k� , �32�

�s
�LC + Ĥs,s − ���s� = − �
k�s

Ĥs,k��k� �s � 0� . �33�

The shifting of 1
2
�LC, thus, distinguishes Eq. �32� from the

others in Eq. �33�. It is clear that when the loop inductive
effects are totally neglected, this equation is capable to de-
grade into a two-phase eigenproblem as

Ĥ0�� f� =  f�� f� �34�

and all of the other projected states ��s
�0���s�0� equate to zero,

which suggests that the 	 subsystem decoupled from the LC
oscillator becomes an inductance-free two-phase system and
there is no LC photon excited at the first approximation.

Since the LC oscillator is of high energy, s
�LC always
dominates in Eq. �33� at the excited levels �we assume that
the integer s is larger than zero in this section�. To figure out
the relative strength, another set of operators are defined as

Ĥs,k �
�s,k − Ĥs,k

s
�LC
�35�

with an introduced Kronecker delta function �a,b; thus, Eq.
�33� yields

�1 − Ĥs,s�����s� = �
k�s

Ĥs,k��k� . �36�

As the dominant term of Ĥs,s�� is on O��1/2�, we expand the

modified BW resolvent operator �1−Ĥs,s���−1 as

�i�0Ĥs,s
i ��, and the state ��s� is given as

��s� = �
i�0

�
s1�s

Ĥs,s
i ��Ĥs,s1

��s1
� . �37�

This equation indicates that ��s�, different from ��0�, is a
result of transitions from all of the other levels. Moreover, it
is found that the large photon energy s
�LC and the corre-
sponding multiphoton processes involved punish all of this
kind of transitions via diminishing them on specific orders of
�.

According to the difference of the state ��0� from the oth-
ers, we leave the right-hand side of Eq. �37� separated as

��s� = �
i�0

Ĥs,s
i ��Ĥs,0��0� + �

i�0
�

s1��s,0�
Ĥs,s

i ��Ĥs,s1
��s1

� ,

�38�

which involves two types of PTPs to the sth level: the op-

erator Ĥs,s
i ��Ĥs,0 means that the state ��0� transfers from the

ground level, then through arbitrary times of self-transitions,

to the sth level and Ĥs,s
i ��Ĥs,s1

refers to the other state ��s1
�

�neither ��0� nor ��s�� from the s1th level. Since s1�0 in the
above sum, we also have

��s1
� = �

i1�0
Ĥs1,s1

i1 ��Ĥs1,0��0�

+ �
i1�0

�
s2��s1,0�

Ĥs1,s1

i1 ��Ĥs1,s2
��s2

� , �39�

where s, s1, and i have been substituted by s1, s2, and i1,
respectively. The latter type of PTPs in Eq. �38�, therefore,
can also be divided again as
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��s� = �
i�0

Ĥs,s
i ��Ĥs,0��0�

+ �
i,i1

�
s1��0,s�

Ĥs,s
i ��Ĥs,s1

Ĥs1,s1

i1 ��Ĥs1,0��0�

+ �
i,i1

�
s1��0,s�

�
s2��0,s1�

Ĥs,s
i ��Ĥs,s1

Ĥs1,s1

i1 ��Ĥs1,s2
��s2

� .

�40�

These substitutions employ the procedures of the BW pertur-
bation approach with a clearer view on the orders of the
terms on �. For example, without the expansions of the BW
resolvents, Eq. �40� resembles a familiar BW expansion as

��s� =
1

 − s
�LC − Ĥs,s

Ĥs,0��0�

+ �
s1��0,s�

1

 − s
�LC − Ĥs,s

Ĥs,s1

�
1

 − s1
�LC − Ĥs1,s1

Ĥs1,0��0�

+ �
s1��0,s�

�
s2��0,s1�

1

 − s
�LC − Ĥs,s

Ĥs,s1

�
1

 − s1
�LC − Ĥs1,s1

Ĥs1,s2
��s2

� . �41�

Furthermore, we are also able to substitute the third part in
Eq. �40� and divide it into two parts, the latter one of which
can be substituted again. After retaining the transition paths
to the sth level from the ground level and continuing this
kind of substitutions for n−2 times with s3, s4, . . ., and sn
being introduced, we transform Eq. �38� into

��s� = Ĝs
�n�����0� + �

sn�0
Ĝs,sn

�n� ����sn
� , �42�

where Ĝs
�n��� refers to all of the PTPs from the ground level

involving no more than n times of non-self-transitions and

Ĝs,sn

�n� �� refers to all of the PTPs in a form like

Ĥs,s
i ��Ĥs,s1

Ĥs1,s1

i1 ��Ĥs1,s2
¯Ĥsn−1,sn−1

in−1 ��Ĥsn−1,sn
, the domi-

nant terms of which are at least on O��n/2� contributed by


�LC. Since n can increase so large as to make Ĝs,sn

�n� �� neg-
ligible on an arbitrary order of �, the sth level is uniquely
determined by the state ��0� with a corresponding operator

Ĝs�� defined by

��s� � Ĝs����0� , �43�

where Ĝ0 can also be added as an identity operator Î2p with

Î2p��0�= ��0�. For example, the operators Ĝ1,2,3�� are ap-
proximately given in Appendix B. Therefore, the projected

state ��0� with a map, which a series of operators Ĝs�� func-
tion as, covers the three-phase state ��� completely and ac-
curately. Equation �43� mathematically describes one physi-
cal understanding that, for the states in the manifold M0,

photons persisting in all of the excited levels come from the
ground level via all possible PTPs as illustrated in Fig. 3 due
to the perturbations of the inductance-free flux qubit.

Substituting ��s� in Eq. �32� with the aid of Eq. �43�, we
have an eigenlike problem

H̃����0� = ��0� , �44�

where the pseudo-Hamiltonian H̃�� is defined as

H̃�� = Ĥ0,0 + �
s�0

Ĥ0,sĜs�� . �45�

In the definition of H̃��, all of the terms in the latter
sum can be described in a general form

Ĥ0,sĤs,s
i ��Ĥs,s1

Ĥs1,s1

i1 ��Ĥs1,s2
¯Ĥsn−1,sn−1

in−1 ��Ĥsn−1,0, which
can be interpreted in the terms of the photon-assisted transi-
tions as that the LC photons spread to one specific excited
level such as the sth one from the ground level through an

arbitrary PTP �the role Ĝs�� plays� and then return back �an

operator Ĥ0,s closes the whole PTP�. Therefore, the PTPs

introduced by the operator H̃�� are not only linked but also
closed, starting from and ending with the ground level. It
should be emphasized that a one-to-one correspondence is
established between the terms in this sum and the closed
photon transition paths �CPTP�. Putting aside the details of
the CPTPs in this section, one idea can be accepted that the
longer path the photons travel along, the weaker effects are
brought. Based on the BW expansion, the above derivations
do not lose any accuracy due to the formal substitutions we
utilize. Yet, as drawbacks, to make the whole solution avail-
able, we still need to deal with the infinite terms included in

H̃�� and its dependence on the eigenenergy  which is ac-
tually unknown before we successfully solve the problem.

One common solution for these two problems is to em-
ploy the standard RS perturbation method, which utilizes the
expansions of  and ��0� in Eqs. �28� and �29�, respectively,
and all possible results can be achieved by checking terms on
the same order of � in Eqs. �43� and �44�. This approach
mixes up the BW and RS perturbation methods and benefits
at least on two aspects due to a fact that perturbation effects
of different strengths are able to coexist in one photon tran-
sition matrix element which we can manipulate in a more
physical manner. One is that instead of the step-by-step style

|ϕ0�

|ϕs1�

|ϕs�

Ĥs,0

Ĥs,s

(1)

Ĥs1,0 Ĥs1,s1

Ĥs,s1

Ĥs,s

(2)

FIG. 3. �Color online� Two typical photon transition paths �1�
and �2� represented by the linked operator chains Ĥs,s��Ĥs,0 and

Ĥs,s��Ĥs,s1
Ĥs1,s1

��Ĥs1,0, respectively.
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we directly expand Eq. �44� on a specific order of �1/4 and,
consequently, achieve a series of equations including all of
the cases below this order. In this context, our method now
acts as an improved wrapper for the order analysis utilized
by Ref. 14, and the difference is that we use the projections
before the order comparisons while they prefer that the latter
one goes first. The other is the convenience that we can more
easily predict characteristics of the perturbation results. For
example, without the emphasis on s
�LC and the consequen-
tial result Eq. �43�, it is not obvious in the previous paper
that the projected states on the excited levels can be derived
from ��0�, although the term s
�LC��s

�k+2�� in the expansion
of Eq. �33� on O��k/4� with k as an integer gives a hint in the
RS perturbation method. To avoid that  and ��� should be
obtained in pair step by step in this method, we present a
better one where the effective quantum states for the system
are able to share a unique set of effective operators such as
the effective Hamiltonian and the loop current operator.

C. Effective Hamiltonian

The photon transition path concept leads to an easier un-

derstanding on H̃��. Let us expand H̃�� to order �3/2 with

the aid of Fig. 4 and Table I. To begin with, like Ĥs,s1
in Eq.

�31�, each CPTP operator in H̃�� holds its own identical
dominant term, the order of which facilitates comparing its
relative strength with others. According to the order analysis
�see Appendix A for some details�, all of the CPTPs involv-
ing the third or higher excited levels, among which the one

P8 P̂8= Ĥ0,3Ĥ3,0 provides the maximum correction on O��2�,
can be dropped as well as the infinite weak ones bound in the
three lowest levels, i.e., from P4 to P7, and a sum of the
remaining three ones P1, P2, and P3 yields one approximate

pseudo-Hamiltonian H̃�3/2��� as

H̃�3/2��� = Ĥ0,0 − Ĥ0,1
Ĥ1,0


�LC
+ Ĥ0,1

�Ĥ1,1 − �Ĥ1,0

�
�LC�2

− Ĥ0,2
Ĥ2,0

2
�LC
, �46�

where its superscript “�3/2�” annotates that it is expanded on
O��3/2� and partial higher-order terms are also included. The

equation H̃�3/2�����0�=��0� becomes a generalized eigen-
problem

H̃L
�3/2���0� = R̂��0� + O��7/4� , �47�

where

H̃L
�3/2� = Ĥ0,0 −

Ĥ0,1Ĥ1,0


�LC
+

Ĥ0,1Ĥ1,1Ĥ1,0

�
�LC�2 −
Ĥ0,2Ĥ2,0

2
�LC
,

�48�

R̂ = 1 +
Ĥ0,1Ĥ1,0

�
�LC�2 . �49�

Although Eq. �47� can be solved �see Appendix C for
details�, an alternative but more general way to eliminate the

 dependence is to substitute H̃�� for  in the perturbation

terms of H̃��. For instance, to deal with the term

−
Ĥ0,1Ĥ1,0

�
�LC�2 ��0�, we can multiply , a constant number commut-
ing with any operator, and ��0� first of all, and then replace

��0� with H̃����0� as follows:

−
Ĥ0,1Ĥ1,0

�
�LC�2 ��0� = −
Ĥ0,1Ĥ1,0

�
�LC�2 H̃����0�

= −
Ĥ0,1Ĥ1,0

�
�LC�2 Ĥ0,0��0� + O��7/4� , �50�

where only Ĥ0,0 in H̃�� is kept in the final expansion. There-

fore, H̃�3/2��� gets rid of its  dependence but changes to a

non-Hermitian effective operator H̃nh
�3/2� as

H̃nh
�3/2� = H̃L

�3/2� −
Ĥ0,1Ĥ1,0Ĥ0,0

�
�LC�2 . �51�

Generally, because this kind of substitutions can continue to
increase the orders of � of the remaining -dependent terms

in H̃�� until the result does not depend on  on the order we

|ϕ0�

|ϕ1�

|ϕ2�

|ϕ3�

...

P1 P2 P3 P4 P5 P6 P7 P8

1

1

FIG. 4. �Color online� CPTPs of different types. The last steps

of those CPTPs do not denote the Ĥ0,s-like operators but the

Ĥ0,s-like ones.

TABLE I. For typical CPTPs labeled in Fig. 4, their correspond-
ing operators and the orders of their dominant terms on � are listed.
The CPTPs P1, P3, and P8 denote the cases of the direct connection
type for the first, second, and third excited levels, respectively. By
checking the orders, it is found that P1 is stronger than any CPTP
involving the first excited level such as P2, P5, P6, and P7. The

photon energy denominator in the self-transition operator Ĥ1,1��
yields that P2 is weaker than P1.

Label Operator Order

P1 P̂1= Ĥ0,1Ĥ1,0 �1

P2 P̂2= Ĥ0,1Ĥ1,1��Ĥ1,0 �3/2

P3 P̂3= Ĥ0,2Ĥ2,0 �3/2

P4 P̂4= Ĥ0,2Ĥ2,2��Ĥ2,0 �2

P5 and P6 P̂5= P̂6
†= Ĥ0,1Ĥ1,2Ĥ2,0 �2

P7 P̂7= Ĥ0,1Ĥ1,2Ĥ2,1Ĥ1,0 �5/2

P8 P̂8= Ĥ0,3Ĥ3,0 �2
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want, this approach, namely, the -H̃�� substitution, can for-

mally achieve an accurate and -independent operator H̃nh
which, however, loses its Hermiticity completely just like

H̃nh
�3/2�, its expansion on O��3/2�. As discussed in the previous

papers,30–32 the non-Hermiticity comes with that ��0� is not a
good effective state candidate in the equation

H̃nh��0� = ��0� . �52�

If we introduce another eigenstate ��� with its eigenenergy
� and  rewritten as � for the sake of symmetry, there
exists an identity overlap problem as

��0��0� � ��,�, �53�

which is also indicated by the generalized eigenproblem

�47�. In fact, defining an operator vector G� = �Ĝ0 , Ĝ1 , . . .�T

�analogously, one can also drop the  dependence of the

operators Ĝ1�� , Ĝ2�� , . . . as we do in Appendix B� with its
norm

Ĝ� = Ĝ�
† = 	�

s

Ĝs
†Ĝs
1/2

, �54�

it is found that the orthogonality of the three-phase states
�� ���=��,� in the manifold M0 can be expressed by the

components Ĝ���0� and Ĝ���0� as

��,� = ��0�Ĝ�
†Ĝ���0� . �55�

Let us construct another equation from Eq. �52� as

H̃eff��eff� = ��eff� �56�

with the two-phase effective state ��eff�

��eff� = Ĝ���0� �57�

and the operator H̃eff

H̃eff = Ĝ�H̃nhĜ�
−1. �58�

According to Eq. �55�, we have restored the orthogonality of

the effective states. Fortunately, the operator H̃eff is also Her-
mitian �see Appendix D for the proofs�. Therefore, the effec-

tive Hamiltonian H̃eff with ��eff� can describe the manifold
M0 of the three-phase system accurately in a compact two-
phase subspace.

We here give some comments on the availabilities of this
method via a comparison to the UT method. According to the
above definitions, it is not difficult to obtain

ĤtrG� Ĝ�
−1��eff� = G� Ĝ�

−1H̃eff��eff� . �59�

Since the state ��eff� is arbitrary and the vector G� Ĝ�
−1 is ex-

plicitly unitary, our method exactly focuses on the manifold
M0 and presents a formal solution on its corresponding ei-

genvector belonging to the transformation T̂ in the UT

method. So H̃0 and ��̃0� in the UT method are equivalently

H̃eff and ��eff� here, respectively. The UT method achieves

the expanded operator Ŝ instead of T̂=eiŜ, suggesting that it

may work more efficiently when the order becomes higher.
The PTP approach, however, gives clear pictures to handle
the expansions on lower orders and also successfully predicts
the properties of this problem. For instance, since the well-
known optical selection rules forbid the photons to take odd
times of creating and annihilating processes to go back to the
same level and since the corresponding operators â† and â
are always associated with a factor proportional to �1/4, it is
found that there only exist nonzero terms on the orders of

�1/4 to even powers in H̃eff; some hints on which have been
given by the orders of the dominant terms in the CPTPs
shown in Table I. See Appendix A for more details. So with

an arbitrary integer r, we have H̃eff in the expansion to order
�r/2 as

H̃eff
�r/2� = �

k=0

r

H̃eff��k/2 + O���r+1�/2� , �60�

where the operator H̃eff ��k/2 is in proportion to �k/2. In our

method, the effective Hamiltonian H̃eff
�r/2� may selectively

keep some higher-order terms for easier calculations and de-

notations, but the nontrivial terms H̃eff ��k/2 for k=0,1 , . . . ,r
are uniquely determined and it still bears an error on ��r+1�/2.
Consequentially, one can have the eigenproblem with im-
proved conditions as

�2k+1� � 0, �61�

��0
�2k+1�� � 0, �62�

where k is an integer, and both �k� and ��0
�k�� are in propor-

tion to �k/4 defined in Eqs. �28� and �29�, respectively.
Going back to Eq. �51�, with the method provided by Eq.

�56� and the expansion of Ĝ� on O��3/2�,

Ĝ�
�3/2� = 1 +

Ĥ0,1Ĥ1,0

2�
�LC�2 , �63�

we have the effective Hamiltonian H̃eff
�3/2�= �H̃eff

�3/2��† as

H̃eff
�3/2� = Ĥ0,0 + H̃0,1,0 + H̃0,2,0 + H̃3

�3/2�, �64�

where

H̃0,1,0 = −
Ĥ0,1Ĥ1,0


�LC
, �65�

H̃0,2,0 = −
Ĥ0,2Ĥ2,0

2
�LC
, �66�

H̃3
�3/2� =

Ĥ0,1Ĥ1,1Ĥ1,0

�
�LC�2 −
1

2

Ĥ0,1Ĥ1,0Ĥ0,0 + Ĥ0,0Ĥ0,1Ĥ1,0

�
�LC�2 .

�67�

Let us scrutinize the terms in the effective Hamiltonian

H̃eff
�3/2�. The first term Ĥ0,0= ��0�Ĥtr��0� originates from the

projection on the ground level of the oscillator. Besides in-

cluding the inductance-free two-phase Hamiltonian Ĥ0, it
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also takes into account the vacuum fluctuations of the oscil-
lator, both of which in total read

Ĥ0,0 =
1

2
Q̂�

TC2p
−1Q̂� − �

k=1

3

e−�k
2/2EJk cos �k, �68�

where �k is a dimensionless factor

�k =
�ser

�k

�4 2�

g�ser
, k = 1,2,3 �69�

with a ratio parameter

g =
EJ0

EC0
=

�0IC0C0

�e2 �70�

showing a typical Josephson energy EJ0 compared to the
charging energy EC0. Because the sinusoidal potential of
each junction is equal to zero on average, the vacuum fluc-
tuations equivalently flush the junction energy EJk into a
weaker one EJk� as

EJk� = e−�k
2/2EJk, k = 1,2,3, �71�

which indicates that the effective size of the kth junction is

reduced by a factor e−�k
2/2 which gives a correction maxi-

mized on O��1/2�.
The nonpositive term H̃0,1,0 providing main effects on

O��� relates to the interactions between the two lowest levels
of the oscillator. The states in the manifold M0 with 
�
�LC hardly afford one high-frequency LC photon, so that
the first excited level of the oscillator is almost empty due to
the ensuing energy punishment. Since the state occupying
the ground level can spread into the first excited level and
also accept its feedback due to the bidirectional transitions

Ĥ0,1 and Ĥ1,0 between those two levels brought by the two-
phase flux qubit system, the almost empty excited level acts
as a “mirror” for the ground one, which endows a correction

H̃0,1,0 to minimize the eigenenergies of the eigenstates. Ac-
cording to Appendix B, we have

H̃0,1,0 = − 1
2L�Ĩ�

�2��2, �72�

where the �-independent current operator

Ĩ�
�0� = Cser�

k=1

3
ICk

Ck
sin �k �73�

resembles Iloop�t� in Eq. �8� with �1, �2, and �3 replaced
with the effective phase variables �1, �2, and �3, respectively,
and dominates in

Ĩ�
�2� = Cser�

k=1

3
e−�k

2/2ICk

Ck
sin �k, �74�

which equivalently keeps the critical current of the kth junc-

tion modified by a fluctuation factor e−�k
2/2 like the case of

EJk� . It is worth noting that the coupling V̂1�̂=
�0�̂

2� Ĩ�
�0� in Ĥint

interestingly renders Ĩ�
�0� and also presents the dominant

terms in Ĥ0,1 and Ĥ1,0. To emphasize it, we assume that those

two subsystems couple with each other only by V̂1�̂ and
have the Hamiltonian

Ĥtr,� = Ĥ0 − 1
2L�Ĩ�

�0��2 + D̂â†â, �75�

where the operator

D̂â†â =
Q̂�

2

2Cser
+

1

2L
	�0

2�
�̂ + LĨ�

�0�
2

�76�

indicates an LC oscillator with an additional flux displace-

ment −LĨ�
�0�. In a semiclassical picture, the above formula

suggests that the average value of the current in the loop

inductance is expected to be Ĩ�
�0� as a function of the slow

junction phases instead of a real zero value when L→0, so

Ĩ�
�0� can be understood as the loop current produced by the

junctions which drives the inductance to generate an addi-
tional small flux. Since the slow-varying-function biased LC
oscillator does not change its own eigenenergies signifi-

cantly, the inductive energy − 1
2L�Ĩ�

�0��2 on O��� is added as
one perturbation correction to the effective two-phase Hamil-
tonian, which can be explained as that the flux generated by

Ĩ�
�0� in the inductance also affects the junctions themselves.

Intuitively, this self-bias effect persistently lowers the poten-
tial on any point which keeps a nonzero current and always
opposes the current direction switching. In the quantum re-
gime, this kind of understanding is still supported by the

facts that the estimation ���D̂â†â���= 1
2
�LC+O��3/2� pro-

vides no effect on O��� and that the inductive energy correc-

tion dominates in H̃0,1,0. Furthermore, a rigorous analysis in

Sec. V also confirms that Ĩ�
�0� is the loop current operator for

the inductance-free flux qubit.

The term H̃0,2,0 shows the direct interactions between the
ground and the second excited levels of the LC oscillator via
two-photon transitions. Photons travel forth and back via the

bidirectional transitions Ĥ0,2 and Ĥ2,0, resulting in a nonposi-
tive operator

H̃0,2,0

EJ0
= −

1

4
��ser

7 �3

2g
	�

k=1

3
e−�k

2/2

�k
cos �k
2

�77�

according to Appendix B. Its main effects are on O��3/2�
contributed by the coupling V̂2�̂2�0 in Ĥint.

Finally, the last term H̃3
�3/2� corresponds to the CPTP op-

erator P̂2= Ĥ0,1Ĥ1,1��Ĥ1,0 which includes the self-transition

Ĥ1,1�� of the first excited level. Since the capacitive energy

part 1
2Q̂�

TC2p
−1Q̂� of the unperturbed Hamiltonian Ĥ0 does not

commute with Ĥ1,0 and Ĥ0,1 which turn out as functions of

the effective phase variables �̂1 and �̂2, in the effective phase
representation ��1 ,�2� with

�� �

��s

�

��t
, f, f = 2

� f

��s

� f

��t
for s,t = 1,2, �78�

simplifying the right-hand side of Eq. �67� yields H̃3
�3/2� in a

symmetric form for the three junctions as
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H̃3
�3/2� = −

L

8
�LC
†�Q̂�

TC2p
−1Q̂�, Ĩ�

�0��, Ĩ�
�0�
‡ + O��2� , �79�

H̃3
�3/2�/f = �

k=1

3

�k�
k=1

3

cos2 �k − �
k=1

3

�k cos2 �k

− 2�
k=1

3

cos �k�
k=1

3
�k

cos �k
+ O��2� , �80�

where

f =� �ser
7 �3

2g�
k=1

3

�k
2

EJ0. �81�

Therefore, the effective Hamiltonian H̃eff
�3/2� has taken ac-

count of four corrections of different types to the unper-

turbed one Ĥ0. Its complicated expression indicates that
treating the LC oscillator as a three-level system does not
stand as an easy task on the derivations and analysis. First of
all, unlike common perturbation situations where two sub-
systems couple with each other via a weak linear interaction,
the Josephson junctions exhibiting as nonlinear inductances

keep the interaction Ĥint in Eq. �26� split into the couplings
of different strengths. For instance, among the effective

corrections in proportion to �3/2, V̂6�̂6 donates one

as V̂6��0��̂6��0� in Ĥ0,0, and V̂3�̂3 as

−�
�LC�−1V̂3��0��̂3��1�V̂1��1��̂��0� in H̃0,1,0. This kind of

terms inside the photon transition operators Ĥs,s1
have been

automatically included in our results while the step-by-step
method should explicitly calculate them out. On the other

hand, V̂2�̂2 turns on the direct connections between the sec-
ond excited level and the ground one, thus straightforwardly
imposing the influences of this excited level without the help

of any other excited one; otherwise, only with V̂1�̂ its maxi-

mum feedback decreases to the CPTP P7 P̂7

= Ĥ0,1Ĥ1,2Ĥ2,1Ĥ1,0 in Table I, the dominant term of which is
on O��5/2�. Thus our method also needs to accumulate suit-
able CPTPs one by one. Moreover, although being a part of

the effective potential in H̃eff
�3/2�, the operator H̃3

�3/2� involves
one self-transition process and performs as a correction sen-
sitive to the eigenenergy �see the pseudo-Hamiltonian

H̃�3/2����. This feature is not good for the analysis of the
experiments which often alter the energy level structure of
the whole system by changing the external flux bias. After

solving the eigenproblem of H̃eff
�3/2�, although the eigenvalue

̃�3/2� directly gives

 = ̃�3/2� + O��2� , �82�

the effective state ��eff
�3/2�� should be preprocessed as

��0� = 	1 −
Ĥ0,1Ĥ1,0

2�
�LC�2
��eff
�3/2�� + O��2� �83�

for further discussions. Even if the difficulties mentioned
above are carefully handled, we should still cope with tens of
terms related to �1,2,3, �, and g. Limited by the fabrication
conditions and other factors, the loop inductance cannot be
enlarged too much, and thus the O��3/2� effects appear es-
sential in rare cases. Therefore, as a compromise between
simplicity and accuracy, we choose one effective Hamil-
tonian on O��� rougher but optimal in this tradeoff as

H̃eff
�1� = Ĥ0,0 −

Ĥ0,1Ĥ1,0


�LC
, �84�

which bears an error on O��3/2�. Dropping the terms in pro-
portion to �3/2 or higher orders of � in Eq. �84� yields an
effective potential

Ṽeff
�1� = − �

k=1

3 	1 −� �ser
3

2g�k
4�1/2 +

�ser
3

4g�k
4�
EJk cos �k

−
1

2
L�Ĩ�

�0��2 �85�

identical to the one presented in Ref. 14. The corresponding
normalized effective eigenstate ��eff

�1�� approximates ��0� on
O��� as

��0� = ��eff
�1�� + O��3/2� �86�

with the eigenenergy ̃�1�

 = ̃�1� + O��3/2� . �87�

D. Arbitrary effective operator

As mentioned above, the photon transition path method
presents not only an accurate prediction on the eigenenergy
by the effective Hamiltonian but also a full description of
how an effective two-phase system is mapped to the three-

phase one. Take an arbitrary three-phase operator F̂ as an
example. Assume that two arbitrary eigenstates ��� and ��� in
the manifold M0 go with their eigenenergies � and �,
respectively, where ��� may equate to ���. The expansions

F̂ = �
m,n

��m�F̂m,n��n� , �88�

��� = �
s

�Ĝs��0����s� , �89�

��� = �
s

�Ĝs��0����s� , �90�

yield

���F̂��� = ��0�	�
m,n

Ĝm
† F̂m,nĜn
��0� = ��eff�F̃eff��eff� ,

�91�

where we define the effective operator for F̂ as
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F̃eff = �
m,n

�ĜmĜ�
−1�†F̂m,nĜnĜ�

−1. �92�

The two-phase effective operator F̃eff depends not only on

F̂m,n, for example, which may obey the optical selection

rules, but also on Ĝm, Ĝn, and Ĝ�
−1 which portray all of the

projected components of the eigenstates in the three-phase

system. Especially, for F̂ as the three-phase identity operator

Î, one can have

Ĩeff = �
n

�ĜnĜ�
−1�†ĜnĜ�

−1 = Î2p, �93�

where Î2p is the identity operator for the effective two-phase

subspace; for F̂= Ĥtr, with Eq. �59� we have a self-consistent
result as

�Ĥtr�eff = �G� Ĝ�
−1�HĤtrG� Ĝ�

−1 = H̃eff. �94�

V. EFFECTIVE CURRENT OPERATOR

In the three-phase system, the current operator can be
achieved in different ways. On one hand, the definition of the
loop inductance L yields

Î� = −
�̂L

L
= −

�0

2�L
�̂ . �95�

On the other hand, according to Kirchhoff’s current law, the
series current flowing toward the kth junction �for k=1, 2,
and 3� can be expressed as a sum of its Josephson supercur-
rent ICk sin �̂k and the one through the capacitor Ck, which

due to the time variation of the charge Q̂k is provided by the
Heisenberg equation

Q̇k = �Ĥtr,iQ̂k/
� = Î� − ICk sin �̂k. �96�

One can simply find that the series current operator of the

loop possesses a unique form Î�.
The virtual work principle, besides the direct derivation

above, also suggests some reasonable forms as

Î��X
=

�V̂tr

��X
, �97�

where V̂tr is the potential term of Ĥtr, because for the eigen-
state ��� we have

���Î��X
��� = ���

�Ĥtr

��X
��� =

��

��X
. �98�

However, since the translations such as the one in Eq. �16�
can alter the dependence of V̂tr on �X, lots of current opera-

tors such as Î�, the dc current operators ICk sin �̂k for k=1, 2
and 3, etc., are possible candidates in this approach, which

all provide the same diagonal matrix elements ���Î��X
���

equal to �� /��X. Unfortunately, this method cannot inform

us which one is proper for the nondiagonal elements.
With the current operator ready for the three-phase sys-

tem, one can expand it in the oscillator subsystem as

��m�Î���n� = −�4 
2

4CserL
3 ��m�m,n+1 + �n�m+1,n� . �99�

With the effective theory shown in Eqs. �91� and �92�, it
yields

���Î���� = −�4 
2

4CserL
3 �

k�1

�k���k��k−1� + ��k−1��k��

�100�

and

Ĩ� = −�4 
2

4CserL
3 �

k�1

�k�Ĝ�
−1�†�Ĝk

†Ĝk−1 + Ĝk−1
† Ĝk�Ĝ�

−1,

�101�

where the tilde symbol labels the effective operators.

Let us check the dependence of Ĩ� on the reduced induc-

tance �. The dimensional factor �4 
2

4CserL
3 , belonging to Î� in

proportion to �−3/4, indicates that this current operator Î�

generally diverges with the loop size. For example, the state

��� with ���0 ��1��= 1
2 carries an infinite loop current ���Î����

when �→0. Oppositely, the optical selection rules zero out
any rule-breaking term regardless of the order of its scale
factor on �, so a real dark state ��dark� in the manifold M0

�0�

where the excited levels of the LC oscillator are entirely
empty is forbidden to possess a current circulating in the
loop due to ��0��̂��0�=0. As a result, with the dimensional

factor the largest term
Ĥ1,0


�LC
among the small perturbations

left in the sum in Eq. �101� provides an inductance-

independent operator Ĩ�
�0�, which has been written in Eq. �73�

and confirms that the junctions determine the loop current
when the inductance is small enough. One interesting thing
is that the effective counterpart for the photon number opera-
tor â†â,

�â†â�eff =
L�Ĩ�

�0��2

2
�LC
+ O��2� , �102�

is mainly determined by the inductive energy L�Ĩ�
�0��2 /2 di-

vided by one LC-photon energy 
�LC. Thus the eigenstates
in the manifold M0 actually look dim with the average pho-
ton number of much less than 1, neither dark with no photon
completely nor bright with one or more photons.

Expanding Eq. �101� to order �, we obtain the effective

current operator Ĩ�
�4� as

Ĩ�
�4� = −�4 
2

4CserL
3 �Ĝ1 + �2Ĝ2

†Ĝ1 + H.c.�O��7/4�, �103�

where the LC oscillator is involved as a three-level system

and the operators in the parentheses such as Ĝ1 should be
expanded on O��7/4� denoted by the subscript. It is clear that
the large dimensional factor leads to deeper explorations on
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the Ĝ operators: Ĝ1 should be expanded at least on O��7/4� in

Ĩ�
�4� but on O��3/4� in H̃eff

�1� and on O��5/4� in H̃eff
�3/2�. According

to the optical selection rules, it is found that Ĩ�
�4� suffers from

an error on O��3/2� compared to Ĩ� as

Ĩ� = Ĩ�
�4� + O��3/2� . �104�

Although the direct expansion in Eq. �103� can be accom-
plished with the help of Appendix B, since our effective
theory can cope with arbitrary three-phase operators, one can

also achieve Ĩ�
�4� via applying the theory to its another defi-

nition on O���. For the sake of clarity, IC0 is utilized as the
current unit, 
=1, and e=1 /2. We construct a current opera-
tor

Îcon = �ser�
k=1

3

sin �̂k = Îcos − �̂�Î� + Îsin, �105�

where according to Eqs. �17� and �19� it has been divided
into three components as

Îcos = �ser�
k=1

3

sin �̂k cos
�ser

�k
�̂ , �106�

�̂� = �ser
2 ��

k=1

3
cos �̂k

�k
, �107�

Îsin = �ser�
k=1

3

cos �̂k sin
�ser

�k
�̂ + �̂�Î�

= �ser
4 �3Î�

3 �
k=1

3
cos �̂k

6�k
3 + ¯ . �108�

With the aid of Eq. �96�, it is not difficult to achieve

Q̇� = �Ĥtr,iQ̂�/
� = Î� − Îcon, �109�

which reads

Q̇� = �1 + �̂��Î� − Îcos − Îsin. �110�

Applying �1− �̂��· to both sides of the above equation, we
have

Î� = �1 − �̂���Îcos + Îsin + Q̇�� + �̂�
2 Î�. �111�

Utilizing the definition in Eq. �92�, one can find that the

effective operators of the three-phase ones �1− �̂��Îsin,

�̂�Q̇�= �̂��Î�− Îcon�, and �̂�
2 Î� equate to zero on O���, and,

thus, it follows that

Ĩ�
�4� = Ĩ�

�2� − �̂�Ĩ�
�2� + Q̇�

eff + O��3/2� , �112�

where

Ĩ�
�2� = ��0�Îcos��0� = ��0�Îcon��0� , �113�

Q̇�
eff =

†Ĥ0,�Ĥ0, Ĩ�
�2��‡

�
�LC�2 + O��3/2� . �114�

Three kinds of effects are taken into account in the above

formula for Ĩ�
�4�. The first term Ĩ�

�2� consistent with its defini-
tion in Eq. �74� shows that the projections
��0�cos��ser�k

−1�̂���0� impose the vacuum fluctuation fac-

tors e−�k
2/2 to the corresponding terms in Ĩ�

�0� for k=1, 2, and

3. The second term −�̂�Ĩ�
�2� is traced back to −�̂�Î� in Îcon as

the result of the linear approximations �k
−1�ser�̂ for

sin��k
−1�ser�̂�. The final term Q̇�

eff represents a tiny current

Q̇� flowing through the series capacitance Cser, which can
also be obtained from the direct expansion in Eq. �103� or
the solution presented by Appendix E. As a twofold commu-
tator, it correspondingly involves a self-transition process

Ĥ1,1
2 ��Ĥ1,0 occurring in the first excited level of the oscil-

lator and, thus, explains why the self-transition processes are
able to challenge the Hermiticity of the effective Hamil-
tonian. With the effective states ��eff

�1�� and ��eff
�1��, the matrix

element ��eff
�1��Q̇�

eff��eff
�1�� can be calculated numerically as

��eff
�1��Q̇�

eff��eff
�1�� = 	 ̃�

�1� − ̃�
�1�


�LC

2

��eff
�1��Ĩ�

�2���eff
�1�� + O��3/2� ,

�115�

where ̃�
�1� and ̃�

�1� involved indicates that the self-transition
effects distinguish the corresponding eigenstates by their dif-
ferent eigenenergies.

Now we have a short summary of several effective current

operators in the effective theory. The operator Ĩ�
�0� defined in

Eq. �73� as an effective current operator excluding any in-
ductive effect acts as the loop current operator for the

inductance-free flux qubit system. The operator Ĩ�
�2� defined

in Eq. �74� appearing in the effective Hamiltonian H̃eff
�1� con-

tains the vacuum fluctuation corrections while both Ĩ�
�0� and

Ĩ�
�2� treat the oscillator as a two-level system. The third one

Ĩ�
�4�, costing more, can include the effects brought by the

second excited level of the oscillator and, especially, pos-
sesses a term coming from a self-transition process which the

effective Hamiltonians H̃eff
�1� and H̃eff

�3/2� do not have. Formally,

the effective current operator Ĩ� like H̃eff can be truncated on
arbitrary orders. However, for the next step, to achieve the

fourth one Ĩ�
�6� accurate on O��3/2�, we should no longer ne-

glect Ĝ�
−1 and expanding Ĝ1 to order �9/4 turns out as a more

cumbersome task without any surprise. In the tradeoff be-

tween simplicity and accuracy, we choose Ĩ�
�4� as the optimal

approximation for Ĩ�, which is also justified by the following
numerical simulations.

VI. NUMERICAL DISCUSSION

To begin with, we first shortly discuss the potential of the
three-phase system at the degenerate point �X=� or f
=�X /2�=0.5 with �1=�2=1 on the coordinates
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��1 ,�2 ,�3�. Figure 5�a� shows the magnitude of the loop
current Iq in the potential minima as a function of �, where
different curves correspond to different �3. When �3�0.5
and � is small enough, the bias flux cannot drive a persistent
current in the loop, and a zero-current point P0= �0,0 ,��
mod 2� achieves the potential minimum −�1−�2+�3. As �
increases, the loop begins to support a nonzero current. If �3
is smaller than a critical value �̄3=�2 /2, which is obtained
by Iq ��=0=�3IC0, the increase in � enlarges the loop current
to achieve the value IC3=�3IC0, the maximum current the
loop can afford. In other conditions, a larger inductance al-
ways suppresses the loop current. As � is large enough, e.g.,
�=5, the inductance aggressively erases the differences
caused by �3 and damps Iq into zero quickly, indicating the
domination of the inductance � in this regime. A simple cal-
culation shows that the phase of every junction tends to be
0 mod 2� and, therefore, the � phase with which we bias the
circuit comes to drop on the loop inductance itself; for ex-
ample, when �=5 and �3=0.8, the inductance phase �̄
reaches 0.60�. Actually, when � is large enough, a tiny but
nonzero current approximately on O��0 /2L� can make the
inductance possess almost the external �-phase bias and
force the circuit to approach a possible global potential mini-
mum −�k=1

3 �k.
When the circuit begins to support a finite nonzero current

in the potential minima, its direction degeneracy yields the
potential minima such as P+= ��̄1

+ , �̄2
+ , �̄3

+� and P−= �−�̄1
+ ,

−�̄2
+ ,2�− �̄3

+�, where �̄1,2,3
+ belong to the interval of �0,��,

depart from each other in pair, while the zero-current point
P0 pins in the phase space as a saddle point of the barrier,
thus forming a double-well potential structure. In this condi-
tion, Figs. 5�b� and 5�c� demonstrate the barrier height de-
fined by the potential difference between P+ and P0 and the
distance between P+ and P−, respectively. It is found that a
larger � enhances the potential barrier and separates further
the well bottoms. Those numerical data verify an intuition
that such a non-negligible inductance suppresses the speed of
switching the directions of the loop current. Consequently, in
the quantum regime, these properties also correspondingly
weaken the interactions between the two persistent-current
states. See Ref. 22 for a detailed discussion on the three-
phase system as well as its numerical method we utilized.33

To study the quantum behaviors of the flux qubit system,
the tight-binding model can be utilized in the first step,4,21,34

and the Hamiltonian of the three-phase flux qubit with proper
parameters can be expanded approximately in its two flux
states locating in two neighboring potential minima, respec-
tively, as

Ĥ = ��XIp�z − ��x, �116�

where �x and �z are Pauli matrices, ��X is the flux deviation
from the degeneracy point �X=0.5�0, ��0 is the tunneling
energy between two flux states, and Ip is the magnitude of
the characteristic current possessed by the flux states. Define

the matrix element imn of the current operator Î� as imn

= �m�Î��n� for the mth and nth eigenstates �m� and �n� with
eigenvalues m and n, respectively. At f =0.5, it yields 2�
=1−0 and Ip can be calculated as the magnitude of i10. For
comparison, the effective theory also gives the corresponding

results such as 2�̃= ̃1− ̃0, ĩmn
�2�, ĩmn

�4�, Ĩp
�2�= �ĩ01

�2�� f=0.5, and Ĩp
�4�

= �ĩ01
�4�� f=0.5, which we utilize the tilde sign to symbolize in this

section. The symbols ĩmn
�2� represent the matrix elements of the

effective but nonoptimal current operator Ĩ�
�2� and ĩmn

�4� are

achieved by the optimal effective current operator Ĩ�
�4�. The

numerical comparisons are given as follows.

Figure 6 plots 2� and 2�̃ as functions of � based on �3
=0.6 and 0.8. When � is small enough, e.g., ��0.1, 2� only
deviates slightly from its inductance-free value. Furthermore,
when � is rescaled �see the inset�, it is found that � does not
decrease monotonically but reaches its maximum value at
��10−3. As mentioned above in the effective theory, the
vacuum fluctuations on O��1/2� brought by the LC oscillator
actually reduce the effective sizes of the Josephson junctions,
thus suppressing the barriers and enhancing the interactions
between these two flux states. On the other hand, the self-

biased inductive effects such as −L�Ĩ�
�0��2 /2 on O��� increase

the barriers and slow down the current direction switching
speed. As a numerical order prediction, we have those two
characteristic factors equal as �1

2�� and get a critical value
��10−3 agreeing with the data of the inset. As � becomes
larger, a clear tunnel rate damping means that the self-biased
effects grow up to a non-negligible level. When ��1, 2� is
more than one order of magnitude smaller than its

inductance-free value, and the effective result 2�̃ decays
more excessively than 2� does; in this situation, a small �
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FIG. 5. �Color online� Features of the potential of the three-phase system in Eq. �9� against the reduced inductance �: �a� loop current
in the potential minima, �b� barrier height of the double-well structure, and �c� distance between two neighboring minima in the potential.
Other parameters are �1=�2=1 and f =0.5 and �3 is shown in the legends.
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means that two flux states of the flux qubit interact with each
other weakly and slowly, rendering that the whole system
fails to act as a useful qubit in a larger �3 such as �3=0.8,
but �3=0.6 only makes the flux qubit slow down which may
benefit the design on it with a large loop inductance. It is a
pleasure that when the effective Hamiltonian on O��� fails to
calculate the inductive effects that involve higher excited
levels of the oscillator, the three-phase system with a set of
traditional design parameters may no longer perform as a
good qubit.

To show the performances of the optimal effective current

operator Ĩ�
�4�, Fig. 7 depicts the numerical data of Ĩp

�2�, Ĩp
�4�, and

Ip vs � on the cases of �3=0.6 and �3=0.8. There is no

doubt that Ĩ�
�4� perfectly achieves the results in a high preci-

sion regardless of �3; even when the inductance has a non-
negligible size ���1�, it can also correctly predict the pro-
files of the Ip-� curves. These curves resemble their classical
counterparts Iq in Fig. 5�a�, which infers us that the shifts of
the classical potential minima introduced by a large induc-
tance also take significant roles in the quantum regime. Com-

pared to Ip and Ĩp
�4�, Ĩp

�2� without full O��� corrections fails to
describe Ip when the influences imposed by the inductance
become notable, e.g., ��0.01, which also emphasizes that
the O��� effects dominate in this region. In fact, the induc-

tive energy term on O��� in H̃eff
�1� tends to make itself mini-

mized averagely in a relatively large � region which forces

Ĩp
�2� to rise too pronouncedly to approximate the real value Ip.

As mentioned above, the vacuum fluctuations of the LC os-
cillator bring in the O��1/2� effects and, thus, reduce the ef-
fective sizes of the junctions. Therefore, the currents are ex-
pected to decline when � is small enough to make the O���
effects negligible, which is also confirmed by the inset of
Fig. 7. When �3=0.8, since the net O��� effects also depress

the currents �see Ip when ��0.01�, Ip and Ĩp
�4� both monoto-

nously decrease in the whole region. On the other hand, lack-

ing full O��� effects, Ĩp
�2� ��3=0.8 increases in the large � re-

gion, so there exists a minimum at ��0.01 in the
corresponding curve when the O��1/2� and O��� effects
strike a balance. For �3=0.6, minima are also found to show
the balances between the opposite O��1/2� and O��� effects.
Both of those two types of minima support our previous
conclusion that ��10−3–10−2 is the watershed to distinguish
the region dominated by the vacuum fluctuations. Figure 8

demonstrates the � dependence of the errors which �̃ and Ĩp
�4�

bear. The linear fitting indicating that these errors are ap-
proximately on O��1.5� sufficiently verifies our analytical
conclusions.

When a small magnitude of time-dependent flux is ap-
plied to drive the circuit, the matrix elements imn contribute
to the strengths of the photon-assisted transition rates, sig-
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nificant for the control of the circuit.24 We consider its three
lowest levels and plot the magnitudes of the matrix elements
i01,02,12 vs the reduced flux bias f in Fig. 9. When � increases
to �=0.5, the �imn�-f curves keep the same shapes approxi-
mately except for that their linewidths are much narrower,
meaning that it is more difficult to control the circuit. The
magnitudes shown in Fig. 10, as f deviates slightly from f
=0.5, are consistent with our previous conclusion on the
weakened interactions, and also indicate that the effective
current operator can accurately predict the results even when
� reaches 1. The inset of Fig. 10 also supports our order
analysis.

To sum up, the optimal effective current operator de-
scribes the loop inductive effects in good agreement with the

three-phase full quantum predictions even when the size of
the inductance L is comparable with the effective ones’ of the
junctions ���1� and, consequently, the circuit may perform
as a less useful qubit.

VII. CONCLUSION

In summary, an optimal effective two-phase current op-
erator for 3jj flux qubit has been obtained if considering the
inductance of the circuit loop. In our classical analysis, we
have utilized a source transformation to achieve the current
form for the inductance-free two-phase system. Then after
constructing the Hamiltonian for the three-phase system in
the original phase space ��1 ,�2 ,�3�, we choose a reasonable
linear transformation to reformat the Hamiltonian another set
of variables, where the small inductance phase � is separated
as a single coordinate, and find that the system can be treated
as the inductance-free flux qubit interacting with a high-
frequency LC oscillator. Under the condition that the energy
of the slow two-phase flux qubit system is small enough
compared to the LC oscillator’s, an effective theory has been
developed for physical variable operators from the photon
transition path method based on the BW expansion, which is
also suitable for other superconducting circuit types. As an
application for the relatively simple results which are still of
high accuracy, the effective Hamiltonian is expanded to or-
der � and only give an error on O��3/2�. Besides the direct
expansion, enlightened by the classical view on the circuit,
we have also presented another simpler method in the effec-
tive theory to achieve the explicit form of the optimal current

operator Ĩ�
�4� whose corresponding error is merely on the or-

der of �3/2. Finally, we have verified that the optimal effec-
tive operators perfectly describe the numerical properties of
the three-phase system.
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APPENDIX A: ORDER ANALYSIS

For Ĥint in Eq. �26�, we define its expansion as

��m�Ĥint��n� = �
k�1

V̂m,n
�k� �k/4, �A1�

where V̂m,n
�k� are independent of �. According to the optical

selection rules, we have a �1/2 �instead of �1/4� series expan-

sion on Ĥs,s1
as

Ĥs,s1
= ��s−s1�/4�

k�0
V̂s,s1

��s−s1�+2k��k/2 � O���s−s1�/4� , �A2�

where the operator V̂s,s
�0� is an alias for the Hamiltonian Ĥ0,

and “�O���s−s1�/4�” denotes that the dominant terms in the
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corresponding operator Ĥs,s1
are on O���s−s1�/4�. The operator

Ĥs,s1
combines the effects in proportion to ��s−s1�/4,

��s−s1�/4+1/2, ��s−s1�/4+1, etc. Generally, the product

�k=1
n Ĥsk,sk−1

�O����k=1
n �sk−sk−1��/4� can also be expanded in a

�1/2 series, where n and sk are integers.

Operators Ĥs,s1
introduced do not complicate the order

analysis on both H̃�� and Ĝs��. The denominator s
�LC is a

scale factor in proportion to �−1/2, and  in Ĥs,s�� is domi-
nated by �0� independent of �. Therefore, one can obtain a

typical term H̃typ�� in H̃�� as

H̃typ�� = Ĥ0,s0
Ĥs0,s0

i0 ��Ĥs0,s1
Ĥs1,s1

i1 ��Ĥs1,s2
¯ Ĥsn,sn

in ��Ĥsn,0

� O���n+1�/2+�1/2��k=0
n ik+�1/4��k=1

n �sk−sk−1�+s0/4+sn/4� , �A3�

where n, s0 , . . . ,sn, and i0 , . . . , in are integers and sk�sk+1 for

k as an integer. The -H̃�� substitution can change H̃�� into
a -independent one on a specific order via using the first

few largest -less terms such as Ĥ0 to replace . Mathemati-
cally, with n as an integer and r=n /2, we can, respectively,

expand the non-Hermitian Hamiltonian H̃nh
�r� to order �r and

the operator Ĝs
�r� to order �s/4+r as

H̃nh
�r� = H̃nh

�r���0 + H̃nh
�r���1/2 + H̃nh

�r��� + ¯ + H̃nh
�r���r + O��r+1/2� ,

�A4�

Ĝs
�r� = Ĝs

�r���s/4+1/2 + Ĝs
�r���s/4+2/2 + Ĝs

�r���s/4+3/2 + ¯ + Ĝs
�r���s/4+r

+ O��s/4+1/2+r� , �A5�

where H̃nh
�r� ��k/2 ��k/2 and Ĝs

�r� ��s/4+k/2 ��s/4+k/2 for the integer
k. With Eqs. �A4� and �A5�, it can be verified correct that the

operator Ĝ� in Eq. �54� does not hold any term in proportion
to ��2k+1�/4 for k as an integer. Therefore, the statement on

H̃eff in Eq. �60� can be justified without any doubt. Since the
effective states and their eigenenergies are determined by the

effective Hamiltonian H̃eff, we also have �2k+1��0 and
��0

�2k+1���0 for k as an integer in Eqs. �28� and �29�, respec-
tively.

APPENDIX B: DETAILS OF OPERATOR EXPANSIONS

In this section and Appendix E, IC0 is utilized as the cur-

rent unit, 
=1 and e=1 /2. First of all, the operator Ĥs,s1
�here s may equate to s1� in Eq. �31� is

Ĥs,s1
= Ĥ0�s,s1

+ ��s��
k=1

3 ��k cos �k − �k cos	�k +
�ser

�k
�


���s1
�

= Ĥ0�s,s1
+ �

k=1

3

�k cos �k�s,s1

−
1

2�
k=1

3 	�ke
−�k

2/2+i�k �
t=0

min�s,s1� �s ! s1!�i�k�s+s1−2t

t ! �s − t� ! �s1 − t�!
+ c.c.
 ,

�B1�

where �k=
�ser

�k
�4 2�

g�ser
,k=1,2 ,3 have been defined in Eq. �69�;

especially, we have

Ĥ0,1 = �
k=1

3

�k�ke
−

�k
2

2 sin �k, �B2�

Ĥ0,2 =
�2

2 �
k=1

3

�k�k
2e−

�k
2

2 cos �k. �B3�

Equation �B1� as an explicit expression is consistent with the
ones in our former order analysis such as Eq. �A2�. For s

=s1, the operator Ĥs,s holds its dominant term Ĥ0 indepen-

dent of �. Since e−�k
2/2=1+O��1/2� and the largest term

among �i�k�s+s1−2t in the sum is on O���s−s1�/4� when t equates

to min�s ,s1�, we have the dominant term of Ĥs,s1
on

O���s−s1�/4� for s�s1. It is due to the optical selection rules

that the fluctuation factors e−�k
2/2 as well as the sums about

�i�k�s+s1−2t can be expanded in a �1/2 series. Thus, the opera-

tor Ĥs,s1
is capable to be expanded in the same way. Equation

�B1� also yields

Ĥ0,0 = Ĥs,s + O��1/2� , �B4�

where s�0 and the terms in proportion to �1/4 miss due to
the optical selection rules.

We expand Ĝ1,2,3�� as follows:

Ĝ1�� = Ĥ1,0 + Ĥ1,1��Ĥ1,0 + Ĥ1,1
2 ��Ĥ1,0 + Ĥ1,2Ĥ2,0

+ O��9/4�

= −
Ĥ1,0


�LC
+

�Ĥ1,1 − �Ĥ1,0

�
�LC�2 −
�Ĥ1,1 − �2Ĥ1,0

�
�LC�3

+
Ĥ1,2Ĥ2,0

2�
�LC�2 + O��9/4�

= −
Ĥ1,0


�LC
+

Ĥ1,1Ĥ1,0 − Ĥ1,0Ĥ0,0

�
�LC�2 −
†Ĥ0,�Ĥ0,Ĥ1,0�‡

�
�LC�3

+
Ĥ1,2Ĥ2,0

2�
�LC�2 + O��9/4� , �B5�

Ĝ2�� = Ĥ2,0 + Ĥ2,2��Ĥ2,0 + Ĥ2,1Ĥ1,0 + O��8/4�

= −
Ĥ2,0

2
�LC
+

�Ĥ2,2 − �Ĥ2,0

4�
�LC�2 +
Ĥ2,1Ĥ1,0

2�
�LC�2 + O��8/4�

= −
Ĥ2,0

2
�LC
+

�Ĥ0,Ĥ2,0�
4�
�LC�2 +

Ĥ2,1Ĥ1,0

2�
�LC�2 + O��8/4� , �B6�
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Ĝ3�� = Ĥ3,0 + O��7/4� = −
Ĥ3,0

3
�LC
+ O��7/4� , �B7�

where since from the effective Hamiltonian we know that

H̃�� = Ĥ0 + O��1/2� = Ĥ0,0 + O��� , �B8�

we utilize the -H̃�� substitutions on specific orders of � as
follows:

Ĥ1,0

�
�LC�2 ��0� =
Ĥ1,0H̃��
�
�LC�2 ��0� =

Ĥ1,0Ĥ0,0

�
�LC�2 ��0� + O��9/4� ,

�B9�

�Ĥ1,1 − �2Ĥ1,0

�
�LC�3 ��0� =
�Ĥ1,1

2 + 2 − 2Ĥ1,1�Ĥ1,0

�
�LC�3 ��0�

=
Ĥ1,1

2 Ĥ1,0 + Ĥ1,0H̃��2 − 2Ĥ1,1Ĥ1,0H̃��
�
�LC�3

���0�

=
†Ĥ0,�Ĥ0,Ĥ1,0�‡

�
�LC�3 ��0� + O��9/4� , �B10�

Ĥ2,0

4�
�LC�2 ��0� =
Ĥ2,0H̃��
4�
�LC�2 ��0� =

Ĥ2,0Ĥ0

4�
�LC�2 ��0� + O��8/4� .

�B11�

APPENDIX C: SOLUTION OF GENERALIZED
EIGENPROBLEM

For the generalized eigenproblem, due to the perturba-

tions, the positive and Hermitian operator R̂ suggests that Eq.
�47� can be converted to an eigenproblem as

R̂−1/2H̃L
�3/2�R̂−1/2�R̂1/2��0�� = �R̂1/2��0�� + O��2� , �C1�

where the initial “+O��7/4�” has been improved to “+O��2�”
due to the previous discussions on the optical selection rules.

Expanding R̂ to order �3/2 in Eq. �C1� yields

H̃eff
�3/2���eff

�3/2�� = ��eff
�3/2�� + O��2� , �C2�

where an effective Hamiltonian H̃eff
�3/2� independent of  reads

H̃eff
�3/2� = Ĥ0,0 −

Ĥ0,1Ĥ1,0


�LC
−

Ĥ0,2Ĥ2,0

2
�LC
+

Ĥ0,1Ĥ1,1Ĥ1,0

�
�LC�2

−
1

2

Ĥ0,1Ĥ1,0Ĥ0,0 + Ĥ0,0Ĥ0,1Ĥ1,0

�
�LC�2 , �C3�

and the effective eigenstate ��eff
�3/2�� is

��eff
�3/2�� = 	1 +

1

2

Ĥ0,1Ĥ1,0

�
�LC�2
��0� . �C4�

The effective Hamiltonian H̃eff
�3/2� is Hermitian since the trans-

formation �R̂−1/2 · R̂−1/2� does not alter the Hermiticity of

H̃L
�3/2�. One remarkable thing is that ��eff

�3/2�� is naturally nor-
malized on O��3/2�. Since the eigenstate ��� is normalized as
�� ���=1, we expand it to order �3/2 and have

1 = ����� = ��eff
�3/2���eff

�3/2�� + O��2� . �C5�

In sum, Eq. �C2� is consistent with Eq. �64� as an eigenprob-
lem which covers the eigenstates in the manifold M0 for the
whole three-phase system on O��3/2�.

APPENDIX D: PROOFS OF HERMITICITY OF H̃eff

First, let us calculate the value of the operator D̂ as fol-
lows:

D̂ = Ĝ�
2H̃nh − H̃nh

† Ĝ�
2. �D1�

According to Eqs. �52� and �55�, applying ��0� · ��0� to Eq.
�D1� yields

��0�D̂��0� = ��0�Ĝ�
2H̃nh��0� − ��0�H̃nh

† Ĝ�
2��0�

= �� − ����,�

� 0. �D2�

Assuming that the dominant term D̂�k� of D̂ is proportional to
�k/4 with k as an integer, we can expand Eq. �D2� to order
�k/4 as

��0
�0��D̂�k���0

�0�� � 0. �D3�

As the projected components ��0
�0�� and ��0

�0�� are arbitrary

eigenstates of the unperturbed Hamiltonian Ĥ0, it yields

D̂�k� � 0 �D4�

and, thus,

D̂ � 0 �D5�

for k is arbitrary. It follows that

Ĝ�
2H̃nh = H̃nh

† Ĝ�
2. �D6�

Finally, we achieve

H̃eff = Ĝ�H̃nhĜ�
−1 = Ĝ�

−1H̃nh
† Ĝ� = H̃eff

† . �D7�

APPENDIX E: CALCULATIONS ON EFFECTIVE
OPERATORS

For the charge operator

Q̂� = i�4 �serg

2�

â† − â

2
, �E1�

we have its effective operator on O��� as
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Q̃� = i�4 �serg

2�

Ĝ1
† − Ĝ1

2
+ O��3/2�

=
i��serg

8
�Ĩ�

�2�,Ĥ0� + O��3/2� . �E2�

With ���, ���, �, and � defined in Sec. IV D, we apply

��� · ��� to Q̇� and expand it on O��� as

���Q̇���� = ����Ĥtr,iQ̂�����

= i�� − �����Q̂����

=
− ��serg�� − ��

8
��0��Ĩ�

�2�,Ĥ0���0� + O��3/2�

= 	� − �


�LC

2

��0�Ĩ�
�2���0� + O��3/2�

= ��0�	�
2 Ĩ�

�2� + Ĩ�
�2��

2 − 2�Ĩ�
�2��

�
�LC�2 
��0� + O��3/2�

= ��0�	 Ĥ0
2Ĩ�

�2� + Ĩ�
�2�Ĥ0

2 − 2Ĥ0Ĩ�
�2�Ĥ0

�
�LC�2 
��0� + O��3/2� ,

�E3�

where we utilize

Ĥ0��0� = ���0� + O��1/2� , �E4�

Ĥ0��0� = ���0� + O��1/2� . �E5�

Therefore, we have

Q̇�
eff =

Ĥ0
2Ĩ�

�2� + Ĩ�
�2�Ĥ0

2 − 2Ĥ0Ĩ�
�2�Ĥ0

�
�LC�2 + O��3/2� , �E6�

which is the same as Eq. �114�.
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